Measure the Noise with NoiseLab APP

Introduction

With MicW i437L microphone, the NoiseLAB is the world first APP to comply with IEC61672-3 Class 2 Sound Level Meter standard. The iPhone-based sound level meter has passed the tests in the USA. The summary of report is shown as follows:

DOMA TO	IDIA AL-L	toto Constations of	70004	
BSWA Type:	Phone Noise	Lab Serial no:	570001	
Customer:	BSW	A		
Department:	Rese	arch		
Contact Person:	Dr. W	u .		
Microphone:	BSWA	Type: i437L	Serial no: 550117	Sens:dB
Measurement Res	sults:			
Indianting of the s	allbaation about for	IF004070.0	Ed 2 Olavia 40	Proved.
Accuration at the c	alloration check tree	Uency - IEC61672-3	Ed.2 Clause 10	Passed
Frequency weight	ings: A Network - IF	C 61672-3 Ed.2 0 C	ause 13	Passed
Frequency weight	ings: C Network - II	EC 61672-3 Ed.2.0 C	lause 13	Passed
Frequency weight	ings: Z Network - IE	C 61672-3 Ed.2.0 Cl	ause 13	Passed
Frequency and tin	ne weightings at 1 k	Hz IEC 61672-3 Ed.	2.0 Clause 14	Passed
Level linearity on t	the reference level r	ange - IEC 61672-3 I	Ed.2 Clause 16	Passed
Toneburst response	se - IEC 61672-3 Ec	1.2.0 Clause 18		Passed
Overload indication	er - IEC 01672-3 Ed	2.0 Clause 19		Passed
High level stability	test - IEC 61672-3	Ed.2.0 Clause 21		Passed
Long term stability	test - IEC 61672-3	Ed.2.0 Clause 15		Passed
Environmental cor	nditions:			
Environmental cor Pressure:	nditions: Temperal	ure: Relative	humidity:	
Environmental cor Pressure: 100.22	nditions: Temperat 22.8	ure: Relative 52.0	humidity:	
Environmental cor Pressure: 100.22 Date of calibration	nditions: Temperal 22.8 1: 7/31/2019	ure: Relative 52.0	humidity:	
Environmental cor Pressure: 100.22 Date of calibration Date of issue: 7/3	nditions: Temperat 22.8 1: 7/31/2019 31/2019	ure: Relative 52.0	humidity:	
Environmental cor Pressure: 100.22 Date of calibration Date of ssue: 7.73 Supervisor: Steve	nditions: Temperal 22.8 h: 7/31/2019 h E. Marshall	ure: Relative 52.0	humidity:	
Environmental cor Pressure: 100.22 Date of calibration Date of Issue: 7/3 Supervisor: Steve Measurements pe	nditions: Temperat 22.8 17/31/2019 31/2019 n E. Marshall oformed by:	ure: Relative 52.0	humidity:	
Environmental cor Pressure: 100.22 Date of calibration Date of issue: 7/3 Supervisor: Steve Weasurements pe	nditions: Temperat 22.8 h: 7/31/2019 b1/2019 n E. Marshall offormed by:	ure: Relative 52.0	humidity:	
Environmental cor Pressure: 100.22 Date of calibration Date of issue: 7/3 Supervisor: Steve Measurements pe	nditions: 22.8 1: 7/31/2019 11/2019 n E. Marshall prormed by:	ture: Relative 52.0	humidity:	
Environmental cor Pressure: 100.22 Date of calibration Date of issue: 7/3 Supervisor: Steve Measurements pe	nditions: Temperat 22.8 h: 7/31/2019 h E. Marshall informed by:	ture: Relative 52.0	humidity: Scantek, II	nc.

Get the APP

- 1. Access the Apple Store in iOS devices, the app is not available for Android yet.
- 2. Search for: NoiseLab. There will be two version of the app, NoiseLab-Lite is good for daily measure and the NoiseLab has some extra feature design for noise analysis. Click on "GET" to download either of them base on your needs.

After installing, a new icon will appear on the home screen of your device.

3. Using external microphone.

It is essential to use MicW i437L external microphone to obtain the accurate noise measurements. The features of i437L are

- 1) Certified in USA as Class 2 sound level meter with NoiseLab
- 2) Calibration with a normal sound level calibrator
- 3) Flat frequency responses
- 4) Omnidirectional responses to sound field

How to take measure

1. Basic Control

Input Microphone: Current working microphone, the icon will change from when external microphone is plugged in. (Upgrade to MicW i437L high precision microphone for more accurate measurement.)

Start: Start the measurement

Timer: Indicate the time lapses of the measurement

Save File: Save your measurement for data review or post-process

Setting: Enter the setting menu

SPL: Enter the Sound Level Meter module

OCT: Enter the Octave Band Measurement module

FFT: Enter the FFT Measurement module

Profiles: Review the result in 3 different sets of configuration

2. Sound Level Meter

Frequency Weighting: Select Z, A, B or C weighting for your measurement

Time Weighting: Select Fast, Slow or Impulse time weighting for your measurement

Sound Pressure Level: Indicate the current sound pressure Level

Min, Max and Peak Level: The maximum and minimum are the highest and lowest sound levels measured, the peak is the peak of the sound pressure wave with no time weighting.

Equivalent Continuous Sound Level: The average of sound level

SPL Over Time: Graph shows the sound pressure level over time history

3. Octave Band Measurement

Frequency Weighting: Select Z, A, B or C weighting for your measurement

Octave Band: Select 1/1, 1/3, 1/6 or 1/12 octave band for your measurement

Data Set: Activate the data set for comparison

Overall: Sound pressure level of current measurement

Octave Type: Select the octave band measurement type (LEQ, RMS or PEAK)

OCT Compare: Select the measurement data or saved measurement data for comparison

Octave Band Analyze: Move the cursor on the graph to get the SPL at certain frequency

4. FFT

Frequency Weighting: Select Z, A, B or C weighting for your measurement

Data Set: Activate the data set for comparison

Overall: Sound pressure level of current measurement

Average Type: Select the average type (No Averaging, Peak Hold, RMS Ave: Lin, RMS Ave: Exp)

FFT Compare: Select the measurement data or saved measurement data for comparison

FFT Analyze: Move the cursor on the graph to get the SPL at certain frequency

5. Profiles

\$ D	Prof	iles		
Unit (dB)	1	2	3	
Filter	z	A	С	Data Configuration
Detector	Fast	Slow	Impulse	·
SPL	66.4	66.4	83.2	
RMS	63.8	35.0	53.6	
MAX	86.4	78.7	91.4	
MIN	53.6	31.6	43.4	
PEAK	113.3	114.1	112.7	
LEQ	70.0	70.6	69.0	
A SPL		MM FFT	Profiles	

Data Configuration: Click on each box to select the frequency weighting and time weighting for the current measurement

6. Setting Menu

Sample Rate: The number of samples of measurement carried per second

Buffer Size: The amount of data allotted for each processing

Calibration: Calibrate the measurement microphone

Time History Content: Select the target level that shows in the SPL over time graph

Base File Name: Customize the measurement file name

Data View: Review and export the measurement data

Saved Datas	Ŵ		(Save	d Data	
ASUREMENTS			Test Date	ouro	Overload	
20190710 115528		1	07/10/2019		NO	
PL, A, Slow	00:00:08.1		Start	Duration	Sample	BufferSize
est 20190709 145659			11:55:28	00:00:08.1	48000	16384
PL, A, Slow	00:00:21.5		Filter	Detector	SPL	RMS
est_20190620_182643	00.00.08 8		A	Slow	67.0	31.4
, A, Slow	00:00:08.8		MAX	MIN	PEAK	LEQ
st_20190620_182605	00-00-12 2		80.0	35.0	92.4	74.3 DMS
PL, A, Slow	00.00.12.2		7	Fast	55.6	53.9
est_20190609_190017	00.00.12.2		MAX	MIN	PEAK	LEQ
L, A, Fast	00.00.12.2		83.5	53.2	91.1	74.2
st_20190609_185823	00:00:08.5		Filter	Detector	SPL	RMS
_, A, Fast			A	Slow	67.0	31.4
			MAX	MIN	PEAK	LEQ
			80.0	35.0	92.4	74.3
			Filter	Detector	SPL	RMS
				Impulse	74.6 DEAK	48.6
			84.8	43.7	90.8	74.1
			Time Histor	w Doto		
			SPL, A, Slov	y Data N		>
			Octave Data	а		>
			1/3, LEQ			· · · · · · · · · · · · · · · · · · ·
			FFT Data			>
			Peak Hold			
A da www	:=-		۱	ala	MM	:
SPL OCT FFT	Profiles		SPL	OCT	FET	Profiles

About App: Introduction and contact information of this App

7. Calibration

In order to take a scientific measurement with microphone, its precise sensitivity must be known. NoiseLab provides a simple approach for user to calibrate their external microphone with standard calibrator.

Calibration	< Calibration	
 54.3 ⊕ 	116.8	2444 1715 Cadaran 114.0
Correction 0.0 dB	Correction 56.6 dB	Connection 8.4.00 Marcus adductived Marcus adductived Marcus adductive
Manual adjustment	Manual adjustment	
Calibrator 94dB@1000HZ	Calibrator 94dB@1000HZ	
Calibrator 114dB@1000HZ	Calibrator 114dB@1000HZ	
	\bigcirc	The second se
SPL OCT FET Profiles	SPI OCT FET Profiles	

Manual Adjustment: Manually set the Sound Pressure Level according to the calibrator

Calibrator (94dB@1000HZ): When calibrating the microphone with a 94dB@1000Hz calibrator. First, plugin your external microphone to your device, then plug the microphone into the running calibrator, next click on the Calibrator (94dB@1000HZ) button and the App will automatically calibrate the microphone. Last, click on the "check mark" and you will be all set!

Calibrator (114dB@1000HZ): The procedure is same as above, except using a 114 dB@1000Hz calibrator.

